Singapore’s foray into space

Boldly going where no little red dot has gone before – Singapore space industry


By Derrick A Paulo, Lee Li Ying and Sharifah Fadhilah Alshahab

The efforts of the country’s budding space industry are giving the Republic a larger stake in the space race than many people may think. The programme Why It Matters looks at the opportunities and obstacles.

The first made-in-Singapore commercial earth observation satellite was launched in December 2015. A global network of satellites may be on the horizon

Over the past four years, Singapore-based start-up Transcelestial has made a device called Centauri. It is about the size of a shoe box. Its aim: To provide internet connectivity that is around 1,000 times faster, or more, than now.

It just needs to connect to a satellite using laser communications. No, make that a global satellite network the company wants to put into space.

Working from home at the speed of light, however, “isn’t even scratching the surface of the capability” of laser-linked satellites, says Transcelestial co-founder Rohit Jha.

He is looking into connecting “roughly three and a half billion people” — about half the world who have no internet connectivity or have “very basic 2G-level phone services”.

“All you have to do is position a satellite above (them), and drop a laser link. And you can power high-bandwidth internet to everyone,” he tells the programme Why It Matters.

Expecting a roll-out by the end of 2024

Transcelestial is still doing research and development for its global space network, and eyeing a roll-out by the end of 2024.

The start-up is not alone in aiming high. There are more than 30 firms and over 1,000 people in Singapore’s budding space industry.

And the effort they are putting into space technology is giving the nation a larger stake in the space race than many people may think.

Since 2004, investors have put US$135 billion (S$183 billion) into the global space sector. Singapore, though a little red dot, accounts for 7 per cent of the global share.

By 2040, the global space industry could generate revenue of US$1.1 trillion, according to Morgan Stanley estimates. It is a race for big money, even as Singapore’s foray into space could help to solve world problems too.

‘LOW-HANGING FRUIT’

For space superpowers and private companies with deep pockets, going into space also means attempting missions to the Moon and beyond.

But that is not the kind of breakthrough that Singapore Space and Technology Association president Jonathan Hung thinks the Republic needs.

Size is a consideration here — the Kennedy Space Centre, where such missions blast off in the United States, occupies a site that is 80 per cent of Singapore’s land area.

“We’ve got to pick and choose what we want to do. Right now, Singapore’s play is very much within the satellite domain. Now, satellites can do quite a lot. Specifically, we cover telecommunications. We also cover advanced navigation,” says Hung.

These are some of the “low-hanging fruit” he believes should not be underestimated. “There are good jobs. We can create … advanced manufacturing activities. All these things will help regenerate and spur the economy on.”

Jonathan Hung has been wooing government players, research foundations and international partners for the past 14 years to make Singapore a bona fide space hub

There are now more than 2500 satellites orbiting the earth – there will be more

Without satellites providing location tracking, smartphone apps that people take for granted, like ride-hailing services and Google Maps, would stop working. There are now more than 2,500 satellites orbiting the earth, and experts say there will be more.

These go as far as 35,000 kilometres away. It is the orbital altitude of geosynchronous satellites transmitting television and other signals to the ground. There are also satellites orbiting at lower levels.

Transcelestial, for example, plans to put its satellites at around 1,000 km above ground. It is a reason its signals would be faster — taking “less than five milliseconds” instead of a delay of “almost a second”, says Jha.

Another benefit of its satellite technology, especially to a city like Singapore, could be the cheaper and thus faster roll-out of 5G.

“If you’re building fibre networks, a kilometer of fibre is roughly around US$100,000 to US$150,000 … Our device usually comes in at one-tenth of that price,” cites Jha.

EYE IN THE SKY

Satellite products and services are driving more than half of space-related commercial activities worldwide. In Singapore, the first commercial remote sensing satellite built here — called TeLEOS-1 — was launched in 2015 by Singapore Technologies (ST) Electronics.

The satellite gave the Republic an eye in the sky to see what was going in the region, with geospatial analysts studying its pictures to provide insights for organisations willing to pay for them.

There are just two problems with TeLEOS-1. It cannot see through clouds, and is blind at night.

So engineers are putting together something with a more powerful vision. TeLEOS-2, which is now undergoing testing. It will carry radar that can capture images day or night, and no matter what the weather condition.

But it may be a couple of years before the satellite is launched.

A team of 70 engineers took five years to develop TeLEOS-1, considering the space environment a satellite must operate in “compared to our everyday electronics”, as systems engineer Tan Chek Wu puts it.

For example, it alternates between heat and cold “14 to 15 times a day” in orbit, cites Tan, who is with ST Engineering’s satellite systems. It also travels at “more than 7 km per second” — even airplane speeds do not come close.

And to ensure that a satellite can “survive the vibrations of the journey” on a rocket launched into space, his team must “put it on a big shaker” first.

NANOSATELLITES AND 18-METRE ROCKETS

While the TeLEOS-1 is a 400-kg satellite, former defence engineer Ng Zhen Ning thinks the start-up he co-founded in 2017, NuSpace, has a winning edge with satellites weighing less than 10 kg.

These nanosatellites can do almost anything conventional satellites can, like monitoring weather conditions or tracking internet data.

“It’s all thanks to miniaturisation of technology,” says Ng, citing the mobile phone as an example. “That has shrunk to the size of an iPhone. The same thing has happened for nanosatellites.”

There may be a vast expanse of space, but budgets are limited. “Building such satellites is roughly 50 times cheaper,” points out the 30-year-old, who expects the cost to go down further, together with the mass manufacturing of satellites.

“We’re working with contract manufacturers to figure out how we can streamline the entire assembly process. And hopefully by 2024, we should be able to have this assembly line here in Singapore.”

NuSpace’s satellites each weigh up to 4.5 kg

Small satellites have some downsides, however. Big satellites get priority on rockets because they take up most of the space. So if their production schedules are delayed, then everyone else must wait.

Smaller spacecraft for small satellites?

Rocket makers are now coming up with smaller spacecraft so small satellites can have a dedicated ride to space. In Singapore, 29-year-old Simon Gwozdz is looking into this, starting with a research rocket as a prototype for something more powerful.

His dream rocket would be 18 metres high, or six storeys. This would still be six times smaller than some of the largest rockets ever made, as high as 110 metres.

His grander plan, however, is to launch rockets from locations nearer to Singapore.

“Being close to the equator is very, very helpful in launching a rocket. It can go into any kind of orbit. (It) means you can get into any kind of market niche,” says the founder of Equatorial Space Systems.

Compared with the polar regions, an equatorial launch would also save fuel, as the surface at the equator moves faster, giving a rocket an extra push.

“We don’t have much land in Singapore … but there’s a lot of sea. And sea launching has also been done for a number of years,” notes Gwozdz.

“All you have to do is take a barge, retrofit it a little bit, install some extra equipment, and you can use it.”

The ideal location to him would be the Indian Ocean, “because we won’t be overflying anybody’s territory”. He is also looking at the South China Sea, “not very far from the coastline of Johor”.

“We’re currently exploring the possibility of conducting launch operations from that site,” he says, while noting that co-ordination with Malaysia and also Indonesia is “absolutely necessary” in any rocket launch.

Space is becoming a ground for doing business

He thinks it is worth investing in sending a rocket to space, because “in 20 years’ time, a country with no sovereign launch capability will be … like a country that doesn’t have its own airline”.

“Why should we invest in pretty (much) anything, in Changi Airport in the first place?” he adds. “Space is becoming a ground for doing business, on top of the exploration of more lofty ideas of course.”


This article was originally published by

HyPower Lab leads hydrogen drone revolution

South Korean firm envisions the drones being used for parcel delivery, agriculture, freight and transportation

By DAVE MAKICHUK

Hydrogen fuel cell technology (HFCT) is expanding rapidly in many sectors.

For example, Volvo and Daimler have now partnered to speed up the transition away from diesel trucks and towards fuel cell electric vehicles in the European Union. Hydrogen-powered trains are now running in Germany.

BMW Group recently announced plans to unveil a limited series hydrogen fuel cell SUV in 2022. French aerospace giant Airbus is investing heavily in mature fuel cell propulsion systems for the zero-emission aviation market. 

Well, get ready for the newest twist — hydrogen-powered drones.

Not only that, but commercial drones, making deliveries and transporting people.

According to a report in FreightWaves.com, a South Korean-based hydrogen company, in concert with Russian researchers, has announced it will work to commercialize a hydrogen fuel cell drone.

Hypower Lab claims that using fuel cells can increase the flying time of a drone more than four times over traditional lithium-ion batteries — a major advantage.

It also envisions the drones being used for parcel delivery, agriculture, freight and even passenger transportation.

The R&D firm is working with the fuel cell research center under the Institute of Problems of Chemical Physics (IPCP) of the Russian Academy of Sciences (RAS), the report said.

Yury Dobrovlsky, who leads the IPCP RAS research center, said the combination of Russian hydrogen fuel cell technology and Korean artificial intelligence technology will lead to mass production of the drone at competitive prices.

Developing drones for multiple applications

“We will lead the popularization of drone aircraft in the delivery drone commercialization market that needs around 3 million commercial drones in 2025 by establishing the hydrogen fuel cell mass production system exclusively for drones in South Korea,” he said.

The companies will work to develop drones for multiple applications in both Russia and South Korea, the report said.

The drone, which has a flight time of over three hours, Hypower said, features a 12-liter fuel canister with 4.8 hours of battery life.

Hypower is not the only company working on hydrogen-powered drones.

Doosan Mobility Innovation (DMI) announced it too had successfully tested a hydrogen-powered drone in a humanitarian delivery, the report said.

In February, DMI said it would seek European Union approval for its hydrogen fuel cell powerpack for drones later this year. The pack provides 2.6 kilowatts of power for two hours of flight time.

DMI plans to sell its product in Europe, Korea, the US and China.

A hydrogen transport cylinder

To help solve the problem of transporting hydrogen to drones, Intelligent Energy, a UK-based company, has developed a hydrogen transport cylinder — the IE-Soar — that features a high-pressure valve, the report said.

The valve is a key enabler and will make it simple for customers to get their full cylinders where they need them and ready to use, company officials said.

Currently, the legal transport of hydrogen in Europe and the US is limited.

“We know our fuel cells are the ideal choice for UAV (unmanned aerial vehicle) operators requiring longer flight time,” Andy Kelly, head of UAV product development at Intelligent Energy, said.

“However, it is important that we support [these efforts] with the peripherals required to get operational. This valve is a key enabler and will make it simple for our customers to get their full cylinders where they need them and ready to use.”

Hydrogen is combined in the fuel cell with oxygen from the air to produce electricity; as long as hydrogen fuel is provided to the cell, the battery generates power.

This makes them valuable for long-range missions such as gathering aerial data or performing long-range deliveries and inspections, or for applications requiring larger drones and payloads.

Hydrogen batteries also work well in extreme cold weather, can be refueled in minutes and don’t emit greenhouse gasses like long-range, gas-powered drones do.

The Hycopter drone features a 12V payload power and an open bay that can carry up to six-pounds of additional equipment like a hi-res camera in gusty winds. Credit: Courtesy HES Energy.

 

Many hurdles remain however.

Around the world, hydrogen fueling stations currently are few and far between, Inside Unmanned Systems reported.

According to the US Department of Energy, the US has just 44 publicly accessible hydrogen fueling stations and 42 of them are in California. Eighty-four of Europe’s 175-plus stations are in Germany.

The transportation of full, UAV-compatible, hydrogen cylinders is not permitted in Europe or the United States — they must be filled at hydrogen fueling stations, which are sparse.

The scarcity has impacted the time and cost of using hydrogen fuel cells in drone operations.

Intelligent Energy hopes its value can resolve key distribution issues for getting hydrogen to the drones for fueling.

“The next logical step is to get them delivered directly to our customers,” Kelly added. “We want it to be as straightforward as ordering barbecue gas and getting empty cylinders collected.”

HES Energy has also introduced a new, industrial-grade multi-rotor drone that aims to address this significant shortcoming, HiConsumption.com reported.

The new Hycopter is a hydrogen-powered six-propeller drone system that utilizes HES Energy’s innovative 1300W fuel cells to prolong flight duration to nearly three and a half hours — which is almost five times as long as a traditional industrial drone.

The 140g pressure regulated system has three different hydrogen storage options and acts as a platform for high-precision observation systems to remain in use for extended periods of time.

It features a 12V payload power and an open bay that can carry up to six-pounds of additional equipment like a hi-res camera in 20 mph winds.

Sources: FreightWaves.com, InsideUnmanned Systems.comDoosanMobility.comHi Consumption.com

Race is on to pioneer shipping of hydrogen

LONDON – Hydrogen is touted as an inevitable green fuel of the future. Tell that to the people who will have to ship it across the globe at hypercold temperatures close to those in outer space.

Yet that is exactly what designers are attempting to do.

In the biggest technological challenge for merchant shipping in decades, companies are beginning to develop a new generation of vessels that can deliver hydrogen to heavy industry. They are betting plants worldwide will convert to the fuel and propel the transition to a lower-carbon economy.

There are at least three projects developing pilot ships that will be ready to test transporting the fuel in Europe and Asia within the next three years, the companies involved said.

The major challenge is to keep the hydrogen chilled at minus 253 degrees Celsius. It is only 20 degrees above absolute zero, the coldest possible temperature — so it stays in liquid form, while avoiding the risk that parts of a vessel could crack.

That’s almost 100 degrees Celsius colder than temperatures needed to transport liquefied natural gas (LNG). That required its own shipping revolution about 60 years ago.

Japan’s Kawasaki Heavy Industries has already built the world’s first ship to transport hydrogen, Suiso Frontier. It said the prototype vessel was undergoing sea trials. A demonstration maiden voyage of some 9,000 kilometers from Australia to Japan expected in coming months.

“There is the next phase of the project already running to build a commercial-scale hydrogen carrier by the mid-2020s. An aim is to go commercial in 2030.

The aim is to use hydrogen to power commercial vessels as well in the future

The 1,250 cubic-meter tank to hold the hydrogen is double-shelled and vacuum-insulated to help maintain the temperature.

Kawasaki’s prototype, a relatively modest 116 meters long and 8,000 gross tons, will run on diesel on its maiden voyage. The company aims to use hydrogen to power future, larger commercial vessels, Nishimura said.

In South Korea, one of the world’s major shipbuilding hubs, another project is in the works.

Korea Shipbuilding & Offshore Engineering is the first company in the country working on building a commercial liquefied hydrogen carrier.

To tackle the hypercold challenge, the company said it was working with a steelmaker to develop high-strength steel and new welding technology, along with enhanced insulation, to contain the hydrogen and mitigate the risks of pipes or tanks cracking.

On the other side of the world, in Norway, efforts are also underway to build a hydrogen supply chain on the west coast of the country. One group looking to pilot a test ship that could transport hydrogen to planned filling stations. That would be able to service ships as well as trucks and buses.

Norwegian shipping company Wilhelmsen Group is working on the latter project with partners to build a “roll-on/roll-off” ship that will be able to transport liquid hydrogen by way of containers or trailers that are driven onboard, said Per Brinchmann, the company’s vice president, special projects.

Liquid or Gas Option?

The ship is expected to be operational in the first half of 2024, he added.

“We believe once we have this demonstration vessel operational the intention will be to build up bunkering hubs on the west coast (of Norway),” Brinchmann said, referring to the filling stations.

Other companies are exploring a different route to avoid the cold conundrum and what may happen when hydrogen atoms interact with metal.

Canada’s Ballard Power Systems and Australia’s Global Energy Ventures, for example, are working together to develop a ship to transport compressed hydrogen in gas form.

“The earliest time-frame would be 2025-26,” said Nicolas Pocard, vice president marketing and strategic partnerships with Ballard.

The advantage of this gas approach is that it does not require any extreme temperatures. But the downside is that less hydrogen can be transported in a cargo than liquid hydrogen, which is why some of the early movers are opting for the latter.

Wilhelmsen’s Brinchmann said that a 12-meter container would carry about 800 to 1,000 kg of pressurized hydrogen gas, but up to 3,000 kilograms of liquid hydrogen.

Such endeavors are far from risk free.

They are expensive, for a start. None of the companies would comment on the cost of their vessels, though three industry specialists said that such ships would cost more than vessels carrying LNG, which can run to $50 to $240 million each depending on size.

“The cost of a vessel transporting hydrogen will mainly be driven by the cost of the storage system. Storing liquid hydrogen could be very expensive because of its complexity,” Carlo Raucci, marine decarbonization consultant with ship certifier LR, added separately.

More than 30 countries support hydrogen rollout plans

The pilot projects, which are still in experimental stages, must overcome these technical challenges, and also rely on hydrogen catching on as a widely used fuel in coming years.

None of this is certain, though the state support being thrown behind this cleaner-burning fuel suggests it does have a future in the global energy mix.

More than 30 countries, including several in Europe such as France and Germany as well the likes of South Korea and Australia, have released hydrogen rollout plans.

Total planned investments could reach over $300 billion through to 2030 if hundreds of projects using the fuel come to fruition, according to a recent report by the Hydrogen Council association and consultants McKinsey.

The role of shipping would be important to unlocking the potential to convert industries such as steel and cement to hydrogen.

Those two heavy-industry sectors alone are estimated to produce over 10% of global carbon dioxide emissions, and overcoming their need for fossil fuels is one of the key challenges of the global transition to a lower-carbon economy.

Tiago Braz, VP energy with Norwegian marine technology developer Hoglund, said the company was working with steel specialists and tank designers on engineering a ship cargo system that can be used for transporting liquid hydrogen.\

Still in early stages

“We are at the early stages with hydrogen carriers. But unlike when LNG was first rolled out, the industry is more flexible to change,” Braz said.

“It should be a faster transition,” he added.

Specialists say the development of LNG took decades before it was fully rolled out, partly due to the infrastructure and ships required and the few companies willing to invest initially.

Companies active in wider shipping markets are also looking at the possibility of diversifying into transporting hydrogen in the future.

Paul Wogan, chief executive of GasLog Partners, which is a major player in LNG shipping, said it was “open-minded” about moving into hydrogen, while oil tanker owner Euronav said it was examining future energy transportation.

“If that energy is hydrogen tomorrow, we would certainly like to play a role in the emerging industry,” Euronav’s CEO Hugo De Stoop said.

Others such as leading ship-management company Maersk Tankers said they would be open to managing hydrogen shipping assets.

Johan Petter Tutturen, business director for gas carriers with ship certifier DNV Maritime, said his company was involved in concept studies for the transport of hydrogen in bulk at sea.

“It’ll be some years before these projects come to fruition, but if hydrogen is to be a part of the future fuel mix then we have to begin exploring all possibilities now.”

This Tiny Single-Piston Hydrogen Engine Offers A New Take On Internal Combustion

Bilal Waqar

Tiny single-piston hydrogen engine reverts the power back to the old-fashioned combustion engines.

Aquarius, the company behind the build based in Israel unveiled the tiny hydrogen engine and hopes that it can replace gas engine generators and hydrogen fuel cells in the future models of electric vehicles.

The engine weighs only 10 kg and a single moving piston aids it in developing power. The purpose behind the small build is to power an off-grid micro-generator.

Aquarius in its previous single-piston range used more conventional fossil fuels to create combustion. That is now swapped with emissions-slashing hydrogen. Austrian Engineering Firm AVL-Schrick testified that the small engine runs on hydrogen.

“It was always our dream at Aquarius Engines to breathe oxygen into hydrogen technology as the fuel of the future. From initial tests, it appears that our hydrogen engine, that doesn’t require costly hydrogen fuel-cells, could be the affordable, green and sustainable answer to the challenges faced by global transport and remote energy production.”

Despite being lightweight and small, the Aquarius engine design is straightforward and low maintenance. All-in-all it contains a total of 20 parts out of which the only moveable one is the piston. Amazingly, the small engine comes excluding the biggest of the concern relating to the engine and its performance, the engine oil, as per the company behind its build it does not requires any lubrication to perform.

The fossil fuel engines developed by Aquarius are undergoing initial testing in the field in North America, Europe, and Asia. In collaboration with Nokia, the company has completed its phase-one testing. Nokia foresees installing these micro-generators at communication towers in far-off places. A software also built by Aquarius would aid in monitoring the output and efficiency of the generators from the control rooms back in more developed areas.

Phase two testing would include Nokia testing these small generators at pilot sites in Australia, New Zealand, Germany, and Singapore.

The video below shows how its parts come together to form the whole of the mini engine.

Originally published by Wonderful Engineering

Germany and Russia to work on hydrogen

Russia and Germany will jointly implement projects in hydrogen energy. The corresponding agreement was reached by the Deputy Prime Minister of the Russian Federation Alexander Novak with the Minister of Economy and Energy of the Federal Republic of Germany Peter Altmeier

The meeting was also attended by the Minister of Industry and Trade of the Russian Federation Denis Manturov, the rector of the St. Petersburg Mining University Vladimir Litvinenko and the ex-Minister of the Federal Republic of Germany Klaus Toepfer, according to the website of the Cabinet of Ministers of the Russian Federation.

“We agreed that it is important to make joint projects in hydrogen energy. The Prime Minister of the Federal State of Saxony (FRG) Michael Kretschmer recently visited. He proposed joint projects in the field of hydrogen, ” Novak said at the meeting.

“I will give instructions to the Ministry of Energy of Russia so that we jointly propose one or two projects from which we would start,” added the Deputy Prime Minister, whose words are quoted in the release of the Cabinet. According to the Deputy Prime Minister, it is necessary to continue working on joint energy projects.

A German company is already working with Gazprom on this issue.

Meanwhile, Wintershall Dea and Gazprom are discussing the possibility of transporting hydrogen through the existing gas transmission system. The head of the German company, Mario Mehren, told about this in an interview with the corporate magazine of the Russian holding.

“As part of the Science and Technology Cooperation Program between Gazprom and Wintershall Dea, specialists from our companies and joint ventures are discussing current innovative projects in order to find ideas and jointly develop solutions,” Meren explained.

“This initiative has been around for almost 30 years. And it is one of the largest and most intensive exchange formats of this kind, ”said the head of Wintershall Dea. He stressed that during the pandemic, this work continued in an online format.

“For example, in recent months, there has been intense discussion of the possibility of adapting the existing pipeline infrastructure for the transportation of hydrogen. And the use of decarbonized solutions in our joint gas transportation business. Hopefully, soon we will be able to report on new projects in this area, ” Meren added .

In addition, Wintershall Dea and Gazprom are planning a campaign to measure methane emissions. The goal is to reduce the intensity of these emissions during gas production. The partners also plan to jointly develop measures to improve the energy efficiency of compressor stations.

“I am convinced that international partnership will continue to play an important role in the future. And thanks to joint efforts to decarbonize the energy sector, we will be able to further strengthen and expand the successful Russian-German cooperation, ”Meren concluded.

A hydrogen economy is closer than you think

Shell, BP and Saudi Aramco are all actively exploring ways to transition to a hydrogen-mixed economy

By JOHN BALLANTINE

Hydrogen-mixed economy might be coming much sooner than expected. There are many factors contributing to that outcome – at least at the middle term of transition from fossil fuels to renewable energy sources.

Tehran, 1943: Joseph Stalin, Franklin D. Roosevelt and Winston Churchill. Hosted by the young Shah Reza Pahlavi. Agree on plans for the two-front attack on Hitler while sketching out the east-west division of Europe.

Holding the meeting in Iran, with separate consultations with the shah, was no mistake. Gulf oil was a critical resource to the Allied war effort. Oil has flowed under the surface of political conflicts ever since.

Fast-forward to today, and political antagonists and energy players are again forging a messy path forward. This time focused on long-term energy transitions as disparate countries try to slow and eventually stop climate change.

The 2015 Paris Agreement was a groundbreaking diplomatic effort. 196 countries committed to prevent average temperatures from rising by more than 2 C (3.6 F), with an aim of less than 1.5 C (2.7 F). To meet that goal, scientists argue that fossil fuel use will have to reach net-zero emissions by mid-century.

As the world’s population and economies grow, energy demand is expected to increase by as much as 50% over the next 30 years. Making the right long-term investments is crucial.

Different visions of the future

Energy companies and policymakers have widely different visions of that future. Their long-term scenarios show that most expect fossil fuel demand to remain steady for decades and possibly decline. However, many are also increasing their investments in cleaner technologies.

The International Energy Agency has a history of underestimating demand and clean energy. Forecasts that renewable energy will meet about one-third of the global energy demand by 2040 in its most optimistic scenario.

That would be in a world with higher carbon taxes and more wind power, solar power, electric vehicles, carbon capture and storage. Greener technologies may come close to keeping warming under 2 C, but not quite.

Exxon, on the other hand, forecasts a path dependent on a fossil fuel-based economy, with slower transitions to electric vehicles, steady demand for oil and gas, and a warmer world.

Exxon is also investing in carbon capture and storage and hydrogen. However, it believes oil and gas will provide half the global energy supply in 2040 and renewable energy will be less than one-fifth.

OPEC, whose members are among the most exposed to climate change and dependent upon oil and gas, also sees oil and gas dominating in the future. Nonetheless, several Gulf nations are also investing heavily in alternative technologies. – including nuclear, solar, wind and hydrogen.

BP proposes a more focused shift toward cleaner energy. Its “rapid scenario” forecasts flat energy demand and a more dramatic swing to renewables combined with a growing hydrogen economy. The company expects its own renewable energy to go from 2.5 gigawatts in 2019 to 50 GW by 2030. And it expect its oil production to fall by 40%.

Exploring hydrogen’s potential

Others are also exploring hydrogen’s potential. Much as with utilities’ shift from coal to natural gas, hydrogen may ease the transition to cleaner energy with enough investment.

Since this fuel is getting so much industry attention, let’s look more closely at its potential.

Hydrogen has the potential to fuel cars, buses and airplanes. It can heat buildings and serve as a base energy source to balance wind and solar power in our grids. Germany sees it as a potential substitute for hard-coal coke in making steel.

It also offers energy companies a future market using processes they know. It can be liquefied, stored, and transported through existing pipelines and LNG ships, with some modifications.

So far, however, hydrogen is not widely used as a clean-energy solution. First, it requires an upfront investment – including carbon capture capacity. It requires pipeline modifications, industrial boilers for heat rather than gas, and fuel cells for transportation. Plus policies that support the transition.

Second, for hydrogen to be “green,” the electricity grid has to have zero emissions.

Most of today’s hydrogen is made from natural gas and is known as “grey hydrogen.” It is produced using high-temperature steam to split hydrogen from carbon atoms into methane. Unless the separated carbon dioxide is stored or used, grey hydrogen results in the same amount of climate-warming CO2 as natural gas.

The hydrogen market is divided into grey, blue and green fields depending on how the fuel is produced. Image: Facebook

Gray, Blue and Green Hydrogen

“Blue hydrogen” uses the same process but captures the carbon dioxide and stores it so only around 10% of the CO2 is released into the atmosphere. “Green hydrogen” is produced using renewable electricity and electrolysis. It is twice as expensive as blue and dependent on the cost of electricity and available water.

Many electric utilities and energy companies, including Shell, BP and Saudi Aramco, are actively exploring a transition to a hydrogen-mixed economy, with a focus on blue hydrogen as an interim step.

Europe, with its dependence on imported natural gas and higher electricity costs, is setting ambitious net-zero energy targets. That will incorporate a mix of blue and green hydrogen coupled with wind, solar, nuclear and an integrated energy grid.

China, the world’s largest energy user and greenhouse gas emitter, is instead investing heavily in natural gas. Natural gas has about half the carbon dioxide emissions of coal – along with carbon capture and storage and a growing mix of solar and wind power.

Russia, the second-largest natural gas producer after the US, is expanding its gas production and exports to Asia. Some of that gas may end up as blue hydrogen.

Ramping up blue and green hydrogen as clean-energy solutions will require substantial investments and long-term modifications to energy infrastructure. In my view, it is not the magic bullet, but it may be an important step.


This story originally appeared on The Conversation website. To see the original, please click here.

Hydrogen fuels a revolution in Chinese trucks

Analysts say fuel cell electric vehicles are the leading alternatives to internal combustion engine automobiles

By ALAN KIRK

On March 22, a trio of Chinese electric vehicle (EV) companies – Nio, Xpeng, Li Auto, all New York listed – announced that they were hiring investment advisers to assist them with secondary listings in Hong Kong.

Credit Suisse and Morgan Stanley have been appointed as Nio is looking to sell a 5% stake, valued at approximately $3.5 billion. Somewhat lower but still comparable valuations for the other two would bring a total of $7.5 billion to Hong Kong.

Surprising?

CNBC stock market guru Jim Cramer, usually unflappable, did a double take on air, also on March 22, commenting on Ark Investment fund manager Cathie Wood’s call of $3,000 per share for Tesla,

“I don’t think there is a fund manager in this country that could get away with this kind of thing other than Cathie Wood.

“But Cathie Wood actually is so good that you start thinking, ok, what is Elon Musk going to do? Maybe he’s got a lot on his mind that she has thought about and …”

And so it went for several more minutes.

The electric vehicle space is jumping and, of course, Musk almost certainly has a lot in mind that will make it even more attractive to investors.

What he’s most likely not thinking about is the large-scale application of hydrogen for EVs. He once called fuel cells “fool cells.”

But while hydrogen fuel cells are just beginning to provide serious competition to battery powered vehicles in personal transportation, they are making a large impact in the heavier vehicle commercial transportation space where large loads have to be carried over long distances.

That’s where hydrogen has the advantage.

And that’s where China, just getting to be competitive with the likes of Tesla in snazzy passenger cars, is poised to seize the lead with hydrogen-powered trucks.

The hydrogen fuel cell is a rare example of a long-established technology turning into a game-changing disrupter. It has powered spacecraft and submarines for decades. However, it made little headway in ground transportation because governments balked at the cost of building fueling infrastructure. And also because the cost of producing the raw materials was prohibitive.

That’s changing in a big way! Mainly because China has made hydrogen-powered ground transport one of the top priorities of its $560 billion a year technology investment budget.

Europe and Japan  Germany has declared 2021 the year of hydrogen technology  are running only slightly behind China. For the next decade or so, battery-powered passenger vehicles will dominate the market for low-carbon substitutes for the internal combustion engine. But batteries can’t power long-range freight transportation by truck and rail, and China is making a decisive commitment to hydrogen.

China’s commitment to hydrogen has drawn the attention of global investors.

In a March 2021 report entitled “China’s gateway to a hydrogen future,” J.P. Morgan research analysts  Han Fu and Stephen Tsui write, “Green hydrogen, a clean form of energy, clearly holds potential to play a critical role in China’s 2060 carbon neutrality ambitions.

“Fuel Cell EVs appear to be emerging as an early use case. This is an opportunity for the China hydrogen ecosystem to develop approaches to overcome technical and economic challenges, necessary for more widespread future applications. Hydrogen plays have been in market focus, and valuations are lofty.”

“The global automotive fuel cell market size was USD1.07 billion in 2020…This market exhibited a stellar growth of 44% in 2020,” according to a Fortune Business Insights study, and “is projected to grow from USD $1.73 billion in 2021 to UD $34.63 billion in 2028 at a stellar compound adjusted growth rate of 53.5% in the 2021-2028 period.”

The Fortune report adds that fuel cell electric vehicles are “the leading alternatives to the widely used internal combustion engine automobiles.” The lion’s share of the growth, will be in the Asia-Pacific region.

Ares Motor CEO Ian Hanna with some Chinese colleagues at the Wisdom Motor plant in Zhangzhou, Fujian, China. Photo: Supplied.

Already largest market

Already the largest market for Plug-in Energy Vehicles (PEV’s) with 3 million on the road. China projects a fleet of 50,000 fuel-cell vehicles (FCV’s) by 2025 and 1 million by 2030, from only 6,000 on the road in 2019.

Beijing listed hydrogen as an energy source in a public law for the first time in its 2020 Energy Law of the People’s Republic of China. It established subsidies for FCV’s through four government departments, with an emphasis on freight and urban mass transit.

China is ready to finance the refueling infrastructure required to make hydrogen-based transport economically viable. And it has a large supply of hydrogen. It is now produced as a waste byproduct by its chemical industry.

According to government directives issued in September 2020, central government subsidies for FCV’s could reach RMB 17 billion. It is depending on how quickly Chinese cities meet their targets for FCV deployment. Local governments are likely to match the central government support. Supporting between 40,000 and 60,000 new vehicles between 2020 and 2023.

China’s commitment to fuel-cell vehicles prompted a scramble by Europe and Japan to put forward their own programs.

Established Chinese automakers as entrepreneurs are launching new ventures to meet the enormous demand for FCV’s projected by the government. SAIC, a state-owned automaker, plans to produce 10,000 FCV’s a year by 2025. More ambitious is the alliance between startup Ares Motors and two established Chinese vehicle manufacturers, Fujian-based Wisdom Motors and Chery Holdings of Anhui Province.

Ares expects to produce 4,000 PEV’s and FCV’s in 2021 at Wisdom’s Fujian facility. And cross the 10,000- vehicle mark within several years.

Large international automakers are gearing up for the Chinese market. Both as OEM’s and as components manufacturers. Toyota set up a joint venture with FAW group in 2019 which will begin to deliver fuel-cell systems for trucks and buses in China in 2022.

The supply chain for FCV components, moreover, is in an early stage of development. The September government directives focused on building infrastructure (mainly refueling stations) as well as developing a robust supply chain.

This includes more efficient capture of waste hydrogen from China’s chemical industry. Also additional hydrogen production facilities, and manufacturing of fuel stacks (the hydrogen storage module for vehicles) as well as engines.

J.P. Morgan analysts explained in their March 2021 report, “With the carbon-neutrality target now in place, we are optimistic that hydrogen can replicate the success of wind/solar power. The H2 addressable market could grow >30x by 2050, to Rmb12tn, and we estimate green hydrogen’s being commercially competitive by 2030.

This expectation is backed by multiple catalysts to spawn H2 development in China, including top-down policy support, technological improvements and economies of scale.”

Hydrogen, to be sure, remains controversial.

In Europe, Volkswagen-owned Scania, one of Europe’s largest truck producers, declared last year that fuel-cell trucks will be too inefficient and costly to compete with the battery-powered alternative. Scania is betting that improvements in battery technology will allow battery-powered trucks to carry a standard 40-ton load for 4.5 hours — far more than today’s batteries can manage.

To travel several hundred miles today, an eighteen-wheeler would have to carry nothing but batteries to power the engine.

Volvo and Daimler have joined forces with Shell to make hydrogen the future commercial standard for trucking in Europe.

Dubbed “H2Accelerate,” the Shell-led program envisions a public-private partnership to create economies of scale for freight FCV’s. With a network of hydrogen fueling stations built out across Europe by the second half of the 2020s. A trade association, Hydrogen Europe, predicted that Europe would have 10,000 hydrogen trucks in operation by 2025 and 100,000 by 2030.

The United States is far behind Asia and Europe.

A former top General Motors engineer, Ian Hanna, believes in pursuing hydrogen and battery technology in tandem. A former head of GM’s systems safety operations in China, Hanna now heads Ares Motors, an ambitious OEM startup.

What distinguishes Ares is a combination of intellectual property for vehicle fuel cells and partnerships with major Chinese manufacturers that allow it to scale up vehicle production very quickly.

“We’ve got prototypes running on the road  with demonstration vehicles that are to be ready by  the end of the year. We are actually going after significant volume for this year in the thousands  of vehicles,” Hanna told Asia Times.

“And it’s with our dual approach. We’re not only a hydrogen fuel cell company. We’re  also a battery electric vehicle [BEV} company. That dual propulsion strategy  allows us to meet customer needs this year.

“The 2021 volumes will primarily be through the BEV’s. The infrastructure is well established and the technologies of course are mature, so the customer’s comfortable  with it. And then long-term we’ll be able to offer  our customers both the hydrogen fuel cell vehicles and our BEV vehicles. Only  depending upon  whatever is the best fit for their use.”

Choice of electric battery power or hydrogen fuel cells

Ares’ flagship product is a heavy truck with a choice of electric battery power or hydrogen fuel cells. The hydrogen model offers a 1,000-kilometer cruising range with a standard 43-ton load. Compared with 400 kilometers for the battery-electric vehicle version.

“For a lot of the longer-range customers,” Hanna added, “the BEV truck may not make sense. So we’ll be able to offer them both of those solutions. I think our timing will be right. We will have the customer relationships, as well as the technology to differentiate our company.

“We have our own proprietary fuel cell engines and other technology that we can build and integrate into our trucks. By contrast, competitors are doing that through non-binding partnerships. We’ve developed a lot of that technology, and our partners are part of the Ares family. A lot of our technology comes from established OEMs.

“There’s no reason for Ares to go and reinvent an electronic power system. We have great partners that already  know how to do that really well right now. We will  be  able to hit the ground with significant volume in a very short time.”

A key partnership is with Sunrise Power, China’s premier manufacturer of fuel cells, with whom Ares has a joint-venture laboratory. Ares is working with Sunrise and other partners to build hydrogen refueling stations in Europe and North America as well as China.

According to a company release, “The new Ares energy stations will ensure the infrastructure is in place to support both our BEV and FCEV vehicles.  The energy station will include facilities for charging BEV vehicles, Hydrogen fueling pumps, traditional gas and diesel pumps, and battery swap capability.”

Strong government support and a robust supply chain

The combination of strong government support and a robust supply chain for FCV technology as well as hydrogen fuel makes it possible for a startup like Ares to scale up production rapidly.

“Asia Pacific is projected to hold a major market share due to the encouraging FCEV deployment targets of governments. Coupled with increasing investments in hydrogen fueling infrastructure. Additionally, high fuel stacks manufacturing capacities in the region, owing to the presence of large-scale FC passenger car manufacturers, will also add to the regional landscape.

Ares Motor, a Canadian company with principal operations in China, is seeking a Nasdaq listing in the course of the first half of this year. It also builds city and highway buses, as well as logistic vehicles and autonomous tractors for use in port and dock areas.

Perhaps Ares’ most important advantage is to be located in China. Cost efficiency is the key to the future of hydrogen-powered transport. And the cost of hydrogen itself is the most important variable.

China now produces a third of the world’s hydrogen

China now produces a third of the world’s hydrogen. 20 million metric tons a year. Enough to cover a tenth of the country’s total energy needs. At an estimated fuel consumption of 7.5 kilograms of hydrogen for every 100 miles of road haulage, according to Fuelcelslworks.com, China’s present output potentially could power a truck fleet over 267 billion miles a year of transport. More than enough to meet the country’s present annual 6 billion ton-miles of road transportation.

The cost of hydrogen production is falling. From $6 per kilogram in 2015 to $2 per kilogram in 2025.

China led the world in deployment of cost-efficient solar energy. Many analysts expect China to do the same with hydrogen. A study by Chinese scientists argues that a $2/kg hydrogen price can be achieved quickly through electrolysis of water. It produces the purest hydrogen with the lowest overall environmental impact.

Freight and bus transportation with FCVs becomes economically viable at a hydrogen price of $3/kg. Passenger car FCVs become viable at $2/kg.

Apart from China’s comparatively low production costs for hydrogen, a shift to this fuel source contributes to China’s energy security. As of the first half of 2020 China imported 73% of its oil consumption. Substituting home-produced hydrogen for imported oil is a national security measure as well as an economic and environmental consideration.